⚡ Performance and Efficiency Benchmarks

This section reports the performance on NPU with FastFlowLM (FLM).

Note:

  • Results are based on FastFlowLM v0.9.20.
  • Under FLM’s default NPU power mode (Performance)
  • Test system spec: AMD Ryzen™ AI 7 350 (Krakan Point) with 32 GB DRAM.
  • Newer versions may deliver improved performance.

🚀 Decoding Speed (TPS, or Tokens per Second, starting @ different context lengths)

Model Hardware 1k 2k 4k 8k 16k 32k 64k 128k Model
Gemma 3 1B NPU (FLM) 40.0 39.3 38.1 35.8 32.6 26.7 OOC OOC Gemma 3 1B
Gemma 3 4B NPU (FLM) 18.0 17.8 17.6 17.1 16.1 14.5 13.2 11.2 Gemma 3 4B

OOC: Out Of Context Length
Each LLM has a maximum supported context window. For example, the gemma3:1b model supports up to 32k tokens.


🚀 Prefill Speed (TPS, or Tokens per Second, with different prompt lengths)

Model Hardware 1k 2k 4k 8k 16k 32k Model
Gemma 3 1B NPU (FLM) 1004 1321 1528 1645 1657 1596 Gemma 3 1B
Gemma 3 4B NPU (FLM) 528 654 738 754 739 673 Gemma 3 4B

🚀 Prefill TTFT with image (Seconds)

Model Hardware Image
Gemma 3 4B NPU (FLM) 4.3

This test uses a short prompt: “Describe this image.”